
Analysing Information Quality

Requirements in Business Processes

Revisited: Formal Framework

In this document, we describe the disjunctive Datalog formalization of the
predicates and axioms that underlie our formal framework. First, we introduce
the general predicates in Tables 1-4, then we describe the different axioms
that are used for modeling and reasoning about Information Quality (IQ)
requirements in Business Processes (BPs).

General Predicates

Type Predicates: unary predicate that are used for identifying actors, roles,
agents, goals, and information entities respectively.
Actors Relations: binary predicates that are used for identifying specializa-
tion and instantiation relations among actors respectively. The arguments of
specialization predicate are two roles (r 1, r 2), and isa(r 1, r 2) is true, if r 1
is specialization of r 2. While the first argument of instantiation predicate is an
agent (x) and the last is a role (r), and plays(x, r) is true, if (x) plays (r).

Actors Properties: binary predicates that are used to represent the dif-
ferent relation between actors, goals, and information.

own: the first argument of own is an actor (a), and the second is information
(i), where own(a, g) is true, if a is the legal owner of i.

aims: the first argument of aims is an actor (a), and the second is a goal
(g), where aims(a, g) is true, if g is a top level goal of a.

objective: the first argument of objective is an actor (a), and the second is
a goal (g), where objective(a, g) is true, if g is an objective (directly or indirectly)
of a.

producer: the first argument of producer is an actor (a), and the sec-
ond is information (i), while the last is time (currency (age) of information).
Producer(a, i, 0) is true, if a is the producer of i.

reader: the first argument of reader is purpose of use (pou), and the second
is an actor (a), while the last is information (i). Reads(pou, a, i) is true, if a
needs to read i for purpose of use pou.

modifier: the first argument of modifier is an actor (a), and the second is
information (i), where modifier (a, i) is true if a needs to modify i.

sender: the first argument of sender is the required time of send, and the
second and third are actors (a) (sender and the receiver respectively), while the
last is information (i) to be send. Sender(t,a, b, i) is true, if a needs to send i
to a within time t.

has: the first argument of has is an actor (a), and the second is information
(i), while the last is read-time the currency (age) of information that an actor
has. has(a, i, t) is true, if a has i with currency t.

1

Table 1: General Predicates I
Type Predicates
actor(Actor:a) role(Role:r)

agent(Agent:x) goal(Goal:g)

info(Info:i)

Actors Relations
isa(Role:r 1, Role:r 2) plays(Agent:x, Role:r)

Actors Properties
own(Actor:a, Info:i) aims(Actor:a, Goal:g)

objective(Actor:a, Goal:g) producer(Actor:a, Info:i)

reader(POU:purpose,

Actor:a, Info:i).
sender(Time:t, Actor:a,

Actor:b, Info:i).
modifier(Actor:a, Info:i) has(Actor:a, Info:I,

Time:t)

has perm(Perm:p, Actor:a,

Info:i)

need perm(Perm:p, Actor:a,

Info:i)

can provide(Actor:a,

Info:i)

is responsible(Actor:a,

Goal:g)

capable achieve(Actor:a,

Goal:g)

can achieve(Actor:a,

Goal:g)

achieve(Actor:a, Goal:g) achieved(Actor:a, Goal:g)

has perm the first argument of has perm is the permission type p,r,m,s, the
second is an actor a, while the last if information i. has perm(Perm:p, Actor:a,
Info:i) is true, if actor a has permission p/r/m/s over information i.

need perm the first argument of need perm is the permission type p,r,m,s,
the second is an actor a, while the last if information i. need perm(Perm:p,
Actor:a, Info:i) is true, if actor a needs permission p/r/m/s over information i.

can provide: the first argument of can provide is an actor (a), and the
second is information (i), where can provide(a, i) is true if a is able to provide
i.

is responsible: the first argument of is responsible is an actor (a), and the
second is a goal (g), where is responsible(a, g) is true, if a took the responsibility
of g achievement.

can achieve: the first argument of can achieve is an actor (a), and the
second is a goal (g), where can achieve(a, g) is true, if a has the capability
(directly or indirectly) to achieve g.

capable achieve: the first argument of capable achieve is an actor (a),
and the second is a goal (g), where capable achieve(a, g) is true, if a has the
self-capability to achieve g.

2

Table 2: General Predicates II
Actors’ Goals/ Information Dependency
provide(Type: tp, T, Time:t, Actor:a, Actor:b, Info:i)

prvChain(Type: tp, T, Time:t, Actor:a, Actor:b,

Info:i)

delegate(Actor:a, Actor:b, Goal:g)

deleChain(Actor:a, Actor:b, Goal:g)

delegate perm(Actor:a, Actor:b, perm:p, perm:r, perm:m,

perm:s,Info:i)

dele perm Chain(Actor:a, Actor:b, perm:p, perm:r,

perm:m, perm:s,Info:i)

Trust Analysis
trust(Actor:a, Actor:b, Operation: achieve, Goal:g)

trustChain(Actor:a, Actor:b, Operation: achieve,

Goal:g)

trust perm(Actor:a, Actor:b, TypeP:trust/distrust,

TypeR: trust/distrust, TypeM: trust/distrust, TypeS:

trust/distrust, Info:i)

trust perm chain(Actor:a, Actor:b,

TypeP:trust/distrust, TypeR: trust/distrust, TypeM:

trust/distrust, TypeS: trust/distrust, Info:i)

trustPerm(Type perm: tp, Actor:a, Actor:b,

type activity:ta, Info:i)

achieved: the first argument of achieved is an actor (a), and the second is
a goal (g), where achieved(a, g) is true, if g is achieved (directly or indirectly)
from the perspective of actor a.

achieve: the first argument of achieve is an actor (a), and the second is a
goal (g), where achieve(a, g) is true, if g is achieved directly by actor a.

Actors’ Goals/ Information Dependency: ternary predicates that are
used to represent the different relation between actors, goals, and information.

provide/ prvChain: the first argument of provide/ prvChain is provision
type,the second argument is time, while the third and forth arguments are ac-
tors (a, b), and the last is information i, where provide(type, time, a, b, i)/
prvChain(type, time, a, b, i) is true if a provides (directly or indirectly) b with
information i through type provision,and within time.

delegate/ deleChain: the first two arguments of delegate/ deleChain are
actors (a, b), and the third is a goal g, where delegate(a, b, g)/ deleChain(a, b,
g) is true if a delegates a goal g (directly or indirectly) to b.

3

Table 3: General Predicates III
Goal Analysis
andDecomposition(Goal:g,

Goal:g1)
orDecomposition(Goal:g,

Goal:g1)
not leaf(Goal:g)

Goals’ Properties
produces(Goal:g, Info:i) read(Goal:g, Info:i)

modify(Goal:g, Info:i) send(Time:t, Goal:g,

Actor:a, Info:i)

dependent(Goal:g) produce dependent(Goal:g,

Info:i).
read dependent(Goal:g,

Info:i).
modify dependent(Goal:g,

Info:i).
send dependent(Goal:g,

Info:i).
prevented(Goal:g)

produce prevented(Goal:g,

Info:i).
read prevented(Goal:g,

Info:i).
modify prevented(Goal:g,

Info:i).
send prevented(Goal:g,

Info:i).

trust/ trustChain: the first argument of trust is a type (trust/ distrust),
the second and third arguments are actors (a, b), while the forth is achieve
(operation) and the last is the goal (g). We say trust(Type:t, Actor:a, Actor:b,
Operation:o, Trustum:tm)/ trustChain (Type:t, Actor:a, Actor:b, Operation:o,
Trustum:tm) is true if a tust/trustChain b for the achievement of goal g.

delegate perm/ dele perm Chain: the first two arguments of dele-
gate perm/ dele perm Chain are actors (a, b), and arguments from number three
until six are permissions for produce, reads, modify, and send, while the last is
information i. We say delegate perm(a, b, p,r,m,s,i)/ dele perm Chain(a, b,
p,r,m,s,i) is true if a delegates b permission p/r/m/s over information i.

trust perm/ trust perm chain: the first two arguments are actors, and
arguments from number three until six are trust/distrust over produce, read,
modify, and send permissions respectively, while the last argument is information
i. trust perm(a, b, p,r,m,s,i)/ trust perm Chain(a, b, p/x,r/x,m/x,s/x,i) is true
if a trust/distrust b permission concerning p/r/m/s over information i.

Goal Analysis: binary predicates that are used for AND/Or goal refine-
ment.

andDecomposition: the two arguments of andDecomposition are goals (g,
g1), and andDecomposition(g, g1) is true, if g1 is and refinement of g.

orDecomposition: the two arguments of orDecomposition are goals (g, g1),

4

Table 4: General Predicates IV
IQ Analysis
fits send(T, Goal:g,

Actor:a, Info:i)

unauthorized modify(Info:i)

fits read(POU, Goal:g,

Info:i)

fits reader(Actor:a,

Info:i)

accessible read(Actor:a,

Info:i)

accurate read(Actor:a,

Info:i)

inaccurate(Actor:a, Info:i) valid read(Actor:a, Info:i)

invalid read(Actor:a,

Info:i)

consistent read(Actor:a,

Info:i)

inconsistent reader(Actor:a,

Info:i)

interdependent readers(Actor:a,

Actor:b, Info:i)

read time(Time: t,

Actor:a, Info:i)

and orDecomposition(g, g1) is true, if g1 is or refinement of g.
not leaf: the only argument of not leaf is a goal (g), where not leaf(g) is

true, if g is not a leaf goal (g is not and/or decomposed from another goal).
Goals’ Properties: unary and binary predicates that are to describe the

different properties of goals.
produces: the first argument of produces is a goal (g), and the second is

information (i), where produces(g, i) is true, if g produces i.
read: the first argument of read is purpose of use (pou), and the second is

goal (g), while the last is information (i). read(pou, g, i) is true, if g needs to
read i for purpose of use pou.

modify: the first argument of modify is a goal (g), and the second is infor-
mation (i), where modify(g, i) is true, if g modify i.

send: the first argument of send is time (t), the second is a goal (g), and
the third is an actor a, while the last is information (i), where send(t, g, a, i) is
true, if g sends i to actor a within time t.

dependent: the only argument of dependent is a goal (g), where
dependent(g) is true, if g is information dependent. produce dependent /
read dependent/ modify dependent / send dependent the first argument is a
goal (g), and the second is information i, and it is true, if the goals g pro-
duce/reads/modify.send information i.

prevented: the only argument of prevented is a goal (g), where prevented(g)
is true, if g was prevented by any reason for being achieved. produce prevented/
read prevented/ modify prevented/ send prevented the first argument is a goal
(g), and the second is information i, and it is true, if the goals g was prevented
due to produce/ reads/ modify/ send information i related issues.

5

IQ Analysis predicates that can be used to analyze IQ related dimensions.
fits send: the first argument of fits send is time (t), the second is a goal (g),

and the third is an actor a, while the last is information (i), where fits send(t,
g, a, i) is true, if g sends i to actor a within time t.

unauthorized modify: has only one argument information (i), where unau-
thorized modify(Info:i)is true, if i is modify in unauthorized way.

fits read: the first argument of fits read is purpose of use (pou), and the
second is goal (g), while the last is information (i). fits read(pou, g, i) is true if
i fit for purpose of use pou of g.

fits reader: the first argument of fits read is purpose of use (pou), and
the second is an actor (a), while the last is information (i). fits read(pou, a, i)
is true if i fit for purpose of use pou of a (reader).

accessible read(Actor:a, Info:i) the first argument of accessible read
is an actor (a), while the last is information (i). accessible read(Actor:a, Info:i)
is true if a is allowed to read i.

accurate read / inaccurate the first argument of accurate read/ inaccu-
rate read is an actor (a), while the last is information (i). accurate read(Actor:a,
Info:i)/ inaccurate read(Actor:a, Info:i) is true if i is accurate/ inaccurate from
the perspective of a (reader).

valid read/ invalid read the first argument of valid read/ invalid read
is an actor (a), while the last is information (i). valid read(Actor:a, Info:i)/
invalid read(Actor:a, Info:i) is true if i is valid/ invalid from the perspective of
a (reader).

consistent read/ inconsistent read the first argument of consis-
tent read/ inconsistent read is an actor (a), while the last is information (i).
consistent read(Actor:a, Info:i) is true if i is consistent/ inconsistent from the
perspective of a (reader).

interdependent readers the first and second arguments of interdepen-
dent readers are actors (a, b), while the last is information (i). interdependent
readers(Actor:a, Actor:b, Info:i) is true if a and b reads i for the same
purpose of use.

read time: the first argument of read time is time t, the second is an actor
A, while the last if information i. read time(Time: t, Actor:a, Info:i) is true if
actor a reads information i in time t.

Actors Objectives, Entitlements and Capabilities
Axioms

Table 5, lists the actors’ objectives, entitlements and capabilities axioms. For
example, O1 states that if an actor aims for a goal, it became an objective
for such actor. O2 states that if a goal is delegated to an actor, it became its
objective. O3-4 state that if an actor aims for a goal, and this goal is and/or
decomposed, all the sub-goals became an objectives of the actor. E1 states that

6

an actor became responsible of a goal achievement, if the goal is an objective of
the actor, the actor has the capabilities to achieve it, and the goal is leaf goal.

C1 states that an actor is capable of achieving a goal, if the actor plays a
role that has such capability. While C2 states that a role is capable of achieving
a goal, if the role is specialized of a role that has such capability. C3 states that
an actor can achieve a goal, if the actor is capable of achieving it. C4 states
that an actor can achieve a goal, if it delegates the goal to an actor who has
the capability of achieving it. C5 states that an actor can achieve a goal, if the
goal is or decomposed, and the actor has the capability of achieving at least one
of the sub-goals. C6 states that an actor can achieve a goal, if the goal is and
decomposed (two sub goals), and the actor has the capability of achieving all its
sub-goals.

C7-10 state that an actor is producer/ reader/ sender/ modifier of in-
formation, if the actor is achieve and/ or is responsible a goal that pro-
duces/reads/sends/modifies such information. C11 states that an actor has
information, if it is its producer. C12 states that an actor has information,
if such information has been provided to it. C13 is used to define whether an ac-
tor has information regardless its currency. C14 states that an actor can provide
information, if it has such information.

C15-18 state that an actor has produce/read/modify/send permission, if
it is the owner of such information. C19-22 state that an actor has pro-
duce/read/modify/send permission, if such permission has been delegated to
it from an actor has such permission. C23-26 state that an actor needs pro-
duce/read/modify/send permission, if it is a producer/reader/modifier/sender
of such information.

O1 objective(A, G) :- aims(A, G).
O2 objective(A, G) :- deleChain(B, A, G),

objective(B, G).
O3 objective(A, G1) :- andDecomposition(G, G1),

objective(A, G).
O4 objective(A, G1) :- orDecomposition(G, G1),

objective(A, G).
E1 is responsible(A, G) :- objective(A, G),

can achieve(A, G), not not leaf(G).
C1 capable achieve(A, G):-play(A, R),

capable achieve(R, G).
C2 capable achieve(R1, G):-is a(R1, R2),

capable achieve(R2, G).
C3 can achieve(A, G) :- capable achieve(R, G).
C4 can achieve(A, G) :- deleChain(A, B, G),

capable achieve(B, G).

7

C5 can achieve(A, G) :- orDecomposition(G, G1),

can achieve(A, G1).
C6 can achieve(A, G) :- andDecomposition(G, G1),

andDecomposition(G, G2), can achieve(A, G1),

can achieve(A, G2), G1 != G2.
C7 producer(A,I,T) :- achieve(A,G),

produces(Ty,G,I,T).
C8 reader(Ty,POU,Bt,A, I):- is responsible(A, G),

read(Ty,POU,Bt,G, I) .
C9 sender(T,A,B,I):- is responsible(A,G),

send(T,G,B,I).
C10 modifier(A,I):- is responsible(A,G), modify(G,I) .
C11 hasT(A, I, 0) :- producer(A, I, T).
C12 hasT(A,I,T3) :- prvChain(Ty,T1,B,A,I),has(B,I,T2),

#int(T1), #int(T2), #int(T3), T3=T1+T2.
C13 has(A, I):- hasT(A, I, T).
C14 can provide(A, I) :- has(A, I).
C15 has perm(p, A, I):- own(A, I).
C16 has perm(r, A, I):- own(A, I).
C17 has perm(m, A, I):- own(A, I).
C18 has perm(s, A, I):- own(A, I).
C19 has perm(P, B, I) :- delegate perm chain(A, B, P, ,

, , I), has perm(P, A, I).
C20 has perm(R, B, I) :- delegate perm chain(A, B, ,

R, , , I), has perm(R, A, I).
C21 has perm(M, B, I) :- delegate perm chain(A, B, , ,

M, , I), has perm(M, A, I).
C22 has perm(S, B, I) :- delegate perm chain(A, B, , ,

, S, I), has perm(S, A, I).
C23 need perm(p, A, I):-producer(A, I, T) .
C24 need perm(r, A, I):-reader(Ty, POU, BT, A, I) .
C25 need perm(m, A, I):-modifier(A, I) .
C26 need perm(s, A, I):-sender(T, A, B, I) .

Table 5: Actors’ Objectives, Entitlements and Capabili-
ties Axioms

8

Goal & Information Axioms

Axioms concerning the different relations among goals/information are listed
in Table 6. For example, G1-2 state that a goal is not leaf, if it is and/or
decomposed of another goal, and G3-10 states that a goal is dependent, if it
produces, reads, modifies, and/or sends information. G11-14 state that a goal
is prevented, if it has been prevented due to produce, read, modify, send issues
respectively. While G15-65 describe when IQ related issues might prevent a goal.

G1 not leaf(G) :- andDecomposition(G, G1).
G2 not leaf(G) :- orDecomposition(G, G1).
G3 dependent(G):- produce dependent(G, I).
G4 dependent(G):- read dependent(G, I).
G5 dependent(G):- modify dependent(G, I).
G6 dependent(G):- send dependent(G, I).
G7 read dependent(G, I):- read(r,POU, G, I).
G8 send dependent(G, I):- send(T, G, B, I).
G9 modify dependent(G, I):- modify(G, I).
G10 produce dependent(G, I):- produces(Ty,G, I, T).
G11 prevented(G):- modify prevented(G, I).
G12 prevented(G):- produce prevented(G, I).
G13 prevented(G):- send prevented(G, I).
G14 prevented(G):- read prevented(G, I).
G15 modify prevented(G, I):- modify(G, I),

is responsible(A, G), has perm(m, A, I).
G16 produce prevented(G, I):- produces(Ty,G, I, T),

is responsible(A, G), allowed produce(A, I).
G17 allowed produce(A, I):- producer(A, I, T),

has perm(p, A, I) .
G18 accurate produce(A,I):- is responsible(A, G),

produce(chk blv, G, I, T), trusted produce(A,I).
G19 trusted produce(A, I):- producer(A, I, T),

own(A,I).
G20 trusted produce(A, I):- producer(A, I, T),

has perm(p, A, I), trustedPerm(B,A,p,I), own(B,I).
G21 send prevented(G, I):- send(T, G, B, I), not

fits send(T, G, B, I).
G22 fits send(T, G, B, I):- is responsible(A, G),

send(T, G, B, I), fits sender(T, A, B, I).

9

G23 Fits sender(T, A, B, I):- accurate send(T, A, B,

I), complete send(T, A, B, I), valid send(T, A, B,

I), allowed send(A, I).
G24 allowed send(A, I):- has perm(s, A, I).
G25 accurate send(T, A, B, I):- sender(T, A, B, I),

hasT(B, I,), not unauthorized modify(I).
G26 unauthorized modify(I):- modifier(A, I), own(B,

I), not trustedPerm(B, A, m, I), not own(A, I).
G27 complete send(T, A, B, I):- sender(T, A, B, I),

prvChain(iprovision, Tr, A, B, I).
G28 valid send(T, A, B, I):- sender(T, A, B, I),

prvChain(, Tr, A, B, I), #int(T), #int(Tr), Tr

<= T.
G29 fits send(T, G, B, I):- is responsible(A, G),

send(T, G, B, I), prvChain(ip, Tr, A, B, I), not

unauthorized modify(I), #int(T), #int(Tr), Tr <= T.
G30 unauthorized modify(I):- modifier(A, I), own(B,

I), not trustPerm(trust, A, B, modify, I).
G31 read prevented(G, I):- read(r, POU, Bt, G, I), not

fits read(r,POU, Bt, G, I).
G32 fits read(r,POU, Bt,G, I):- is responsible(A, G),

read(r,POU, Bt, G, I), fits reader(A, I).
G33 fits reader(A, I):- accessible read(A, I),

accurate read(A, I), complete read(A, I),

valid read(A, I), consistent read(A, I).
G34 accessible read(A, I):- reader(Ty,POU,Bt,A, I),

has perm(r, A, I).
G35 accurate read(A, I) :- reader(r, POU, Bt, A, I),

has(A, I, T), not inaccurate(A, I).
G36 inaccurate(A, I):- reader(r, POU, Bt, A, I),

has(A, I,), producer(B, I, 0), not own(A,I),

prvChain(p, T, B, A, I), #int(T).
G37 inaccurate(A, I):- read(Ty, POU, no chk blv, G, I),

reader(, , , A, I).
G38 inaccurate(A, I):- reader(Ty, POU, BT, A, I),

hasT(A, I, T), unauthorized modify(I).
G39 inaccurate(A, I):- reader(Ty, PoU, BT, A, I),

producer(B, I, T), not trust produce(trust,A,B,I).

10

G40 trust produce(trust, A, A, I):- producer(A, I, T),

own(A, I).
G41 complete read(A, I):- reader(Ty, PoU, BT, A, I),

complete value(A, I), complete pou(A, I).
G42 complete value(A, I):- producer(A, I,),

reader(, , , A, I).
G43 complete value(A, I):- reader(, , , A, I), hasT(A,

I,), producer(B, I,), prvChain(iprovision, T, B,

A, I), A != B.
G44 complete pou(A, I):- reader(Ty, PoU, BT, A, I),

hasT(A, I,), not composed(I).
G45 complete pou(A, I):- reader(Ty, PoU, BT, A, I),

hasT(A, I,), composedOfOne(I), partOf(I, I1),

hasT(A, I1,).
G46 complete pou(A, I):- reader(Ty, PoU, BT, A, I),

hasT(A, I,), composedOfTwo(I), partOf(I, I1),

partOf(I, I2),hasT(A, I1,), hasT(A, I2,), I1 !=

I2.
G47 complete pou(A, I):- reader(Ty, PoU, BT, A, I),

hasT(A, I,), composedOfThree(I), partOf(I,

I1), partOf(I, I2), partOf(I, I3), hasT(A, I1,),

hasT(A, I2,), hasT(A, I3,), I1 != I2, I1 != I3,

I2 != I3.
G48 composedOfOne(I):- numOfParts(I, 1).
G49 composedOfTwo(I):- numOfParts(I, 2).
G50 composedOfThree(I):- numOfParts(I, 3).
G51 composed(I) :- composedOfOne(I).
G52 composed(I) :- composedOfTwo(I).
G53 composed(I) :- composedOfThree(I).
G54 numOfParts(I, X):- partOf(I, I1), #countZ:

partOf(I, Z) = X.
G55 valid read(A, I):- reader(r, POU, Bt, A, I),

read time(T, A, I), info(I, V), #int(T), #int(V),

V >= T.
G56 valid read(A, I):- producer(A,I,), reader(r, POU,

Bt, A, I).

11

G57 invalid read(A, I):- reader(r, POU, Bt, A, I), not

valid read(A, I).
G58 consistent read(A, I):- only reader(A, I).
G59 only reader(A, I):- reader(, , , A, I),

numOfReaders(X, I), X = 1.
G60 numOfReaders(X, I):- reader(, , , A, I), #countZ:

reader(, , , Z ,I) = X.
G61 consistent read(A, I) :- reader(, , ,A, I), not

only reader(A, I), not inconsistent reader(A, I).
G62 inconsistent reader(A, I):-

interdependent readers(A,B,I), read time(X,A,I),

read time(Y,B,I), #int(X), #int(Y), X != Y, A!=B.
G63 read time(T, A, I):- reader(, , ,A,I), has(A,I,T).
G64 interdependent readers(A, B, I):- reader(Ty,POU,

,A, I), reader(Ty,POU, ,B, I), A!=B.
G65 interdependent readers(B, A, I):-

interdependent readers(A, B, I).
Table 6: General Predicates

Actors’ Goals/ Information Dependency

Table 7 lists the actors’ goals/information/permissions dependency axioms con-
cerning information provision (S1, S2), goals delegation (S3, S4), and permis-
sions delegation (S5, S6). Moreover, it lists trust axioms concerning permissions
(S7, S8) and goals(S9, S10). Finally, axioms s11-14 describe how different kinds
of permissions concerning produce/ read/ modify/ send are instantiated from
permission delegation.

S1 prvChain(Ty,T,A,B,I):- provide(Ty,T,A,B,I).
S2 prvChain(Ty,Z,A,C,I):- prvChain(Ty,X,A,B,I),

prvChain(Ty,Y,B,C,I), #int(X), #int(Y), #int(Z),

Z=X+Y.

S3 deleChain(A,B,G) :- delegate(A,B,G).
S4 deleChain(A,C,G) :- delegate(A,B,G),

deleChain(B,C,G).
S5 dele perm chain(A, B, P, R, M, S, I) :-

delegate perm(A, B, P, R, M, S, I).

12

S6 dele perm chain(A, B, P, R, M, S, I) :-

dele perm chain(A, C, P, R, M, S, I),

dele perm chain(C, B, P, R, M, S, I).

S7 trust perm chain(A, B, TyP, TyR, TyM, TyS, I):-

trust perm(A, B, TyP, TyR, TyM, TyS, I).

S8 trust perm chain(A, B, TyP, TyR, TyM, TyS, I) :-

trust perm chain(A, C, TyP, TyR, TyM, TyS, I),

trust perm chain(C, B, TyP, TyR, TyM, TyS, I).

S9 trustPerm(TyP, A, B, produce, I):-

trust perm chain(A, B, TyP, TyR, TyM, TyS, I).

S10 trustPerm(TyR, A, B, read, I):- trust perm chain(A,

B, TyP, TyR, TyM, TyS, I).

S11 trustPerm(TyM, A, B, modify, I):-

trust perm chain(A, B, Typ, TyR, TyM, TyS, I).

S12 trustPerm(TyS, A, B, send, I):- trust perm chain(A,

B, TyP, TyR, TyM, TyS, I).

Table 7: Social Relations Axioms

Goals Achievement Axioms

Table 8 lists axioms used to identify whether a goal is achieved or not from
the perspective of the actor, who aims for it. A1 states that a goal is achieved
for an actor, if the goal is not information dependent and the actor took the
responsibility of achieving it by itself. A2 states that a goal is achieved for an
actor, if the goal is information dependent but not prevented, and the actor took
the responsibility of achieving it by itself. A3 states that a goal is achieved, if
the goal is achieved from the perspective of the actor who aims for it. A4 states
that a goal is achieved for an actor, if the goal is delegated to an actor and a
trust relation holds between the delegator and delegate, and the goal is achieved
from the perspective of the delegatee. A5-6 state that a goal is achieved for an
actor, if one (or decomposition) or all (and decomposition) of its sub goals is/are
achieved from the perspective of the actor.

A1 achieve(A,G) :- is responsible(A,G), not

dependent(G).
A2 achieve(A,G) :- is responsible(A,G), dependent(G),

not prevented(G).
A3 achieved(A,G) :- achieve(A,G).

13

A4 achieved(A,G) :- deleChain(A,B,G),

trustChain(A,B,achieve,G), achieve(B,G).
A5 achieved(A,G) :- andDecomposition(G,G1),

andDecomposition(G,G2),achieved(A,G1),

achieved(A,G2), G1 != G2 .
A6 achieved(A,G) :- orDecomposition(G,G1),

achieved(A,G1).
Table 8: Goals Achievement Axioms

WFA-net Axioms

Table 9 lists axioms used for the analysis of WFA-nets. W1-3 state that
start(P), end(P), and any between(P) positions are positions of the WFA-
net. W4-5 state that a goal start(G) from the goal model became an activity
end(T) if it has an in goal arc(, G)/ out goal arc(G,) in the WFA-net.
W7 states that any start arc from the start position to an activity, is considered
as incoming arc to such activity. W8-19 axioms are used to define whether an
activity of the WFA-net is enabled. W20 states that a position P is reached
if, there is an outgoing arc from an activity to such position, and such activity
firs. W21 states that an activity fires, if it is enabled, the goal it represent is
achieved, such activity is not prevented in the WFA-net. W22 states that an
activity produces information, if the goal such activity represents produces such
information, and the activty fires. W23 states that an activity reads information,
if the goal such activity represents reads such activity information. W24 states
that an activity of WFA-net is prevented, if such activity reads information that
is not produced in the WFA-net yet. W25 states that an activity of WFA-net
successfully reached its end, if the end position has been reached.

Positions Predicates
W1 position(P):- start(P).
W2 position(P):- between(P).
W3 position(P):- end(P).
WFA-net axioms
W4 activity(G):- in goal arc(, G).
W5 activity(G):- out goal arc(G,).
W6 in goal arc(P, G):- start arc(P, G) .
W7 enabled(G):- start arc(start, G) .
W8 enabled(G):- reached(P), in goal arc(P,G),

oneInArc(G) .

14

W9 enabled(G):- reached(P1), in goal arc(P1,G),

reached(P2), in goal arc(P2,G), twoInArc(G), P1

!=P2.
W10 numOfInArcs(X, G):- in goal arc(P, G), #countZ:

in goal arc(Z, G) = X.
W11 oneInArc(G):- in goal arc(P,G), numOfInArcs(X,G),

X=1.
W12 twoInArc(G):- in goal arc(P,G), numOfInArcs(X,G),

X=2.
W13 arc in(G):- oneInArc(G).
W14 arc in(G):- twoInArc(G).
W15 numOfOutArcs(G, X):- out goal arc(G, P), #countZ:

out goal arc(G, Z) = X.
W16 oneOutArc(G):- out goal arc(G, P), numOfOutArcs(G,

X), X = 1.
W17 twoOutArc(G):- out goal arc(G, P), numOfOutArcs(G,

X), X = 2.
W18 arc out(G):- oneOutArc(G).
W19 arc out(G):- twoOutArc(G).
W20 reached(P):- fired(G), out goal arc(G, P) .
W21 fired(G):- enabled(G), achieved(,G), not

wf prevented(G), not not leaf(G) .
W22 wf produced(I):- produce(Type, G, I, T), fired(G).
W23 wf reads(G, I):- read(r, POU, BType, G, I).
W24 wf prevented(G):- wf reads(G, I), not

wf produced(I).
W25 success WFA net:- reached(end).

Table 9: WFA-net Axioms

Model Analysis and Verification

The properties of the design are shown in Table 10, which can be used to verify
the correctness of the mapping, control-flow, information-flow and IQ require-
ments of the WFA-net model. In what follows, we discuss each of them:

Pro1-6 are used to verify the mapping properties of the WFA-net, where
Pro2-6 are derived from the semantics of the WFA-nets, and they are specialized
for verifying whether every activity and every position are on a path between
the Start and End positions.

15

Pro1 states that only leaf goals are allowed to be mapped as activities of
WFA-net.

Pro2 states that any activity of a WFA-net that has an outgoing arc, should
have at least one incoming arc.

Pro3 states that any activity of a WFA-net that has an incoming arc, should
have at least one outgoing arc.

Pro4 states that the Start position in a WFA-net should be connected with
at least one activity.

Pro5 states that any position (not P(S) or P(E) positions) in a WFA-net
should be connected with at least two activities through one incoming and one
outgoing arcs.

Mapping properties
Pro1 :- activity(G), not leaf(G).

Pro2 :- incoming arc(G), not outgoing arc(G).

Pro3 :- outgoing arc(G), not incoming arc(G).

Pro4 :- start(P), not starting arc(P).

Pro5 :- between(P), not connected(P).

Pro6 :- end(P), not ending arc(P).

Information flow property
Pro7 :- wf reads(G, I), not wf produced(I).

Information Quality properties
Pro8 :- is responsible(A, G), activity(G),

produce(Type, G, I, T), not has perm(produce,

A, I).

Pro9 :- is responsible(A, G), activity(G),

produce(Type, G, I, T), not

accurate produce(A, I).

Pro10 :- is responsible(A, G), activity(G), read(T, P,

BT, G, I), not has perm(read, A, I).

Pro11 :- is responsible(A, G), activity(G), read(T, P,

BT, G, I), not accurate read(A, I).

Pro12 :- is responsible(A, G), activity(G), read(T, P,

BT, G, I), not valid read(A, I).

Pro13 :- is responsible(A, G), activity(G), read(T, P,

BT, G, I), not complete read(A, I).

Pro14 :- is responsible(A, G), activity(G), read(T, P,

BT, G, I), not consistent read(A, I).

16

Pro15 :- is responsible(A, G), activity(G), modify(G,

I), not has perm(modify, A, I).

Pro16 :- is responsible(A, G), activity(G), send(T, G,

B, I), not has perm(send, A, I).

Pro17 :- is responsible(A, G), activity(G), send(T, G,

B, I), has(B, I), not accurate send(T, A, B,

I).

Pro18 :- is responsible(A, G), activity(G), send(T, G,

B, I), not complete send(T, A, B, I).

Pro19 :- is responsible(A, G), activity(G), send(T, G,

B, I), not valid send(T, A, B, I).

Control flow properties
Pro20 :- wf prevented(G).

Pro21 :- not reached(end).

Table 10: Properties of the design

Pro6 states that the End position in a WFA-net should be connected with
at least one activity.

Pro7 states that any activity of WFA-net should have all information it re-
quires (e.g., read, modify, send), where this property is used to verify information
availability (information-flow) for activities of a WFA-net.

Pro8-19 are used to verify IQ related properties of the activities of a WFA-
net. For instance, Pro8 states that a WFA-net should not include any activity
that produces information, and the actor who is responsible for achieving such
activity does not have a produce permission concerning such information.

Pro9 states that a WFA-net should not include any activity that produces
inaccurate information from the perspective of the actor who responsible of
achieving such activity, where produced information is accurate, if its believabil-
ity and the trustworthiness of production have been verified.

Pro10 states that a WFA-net should not include any activity that reads
information, and the actor who is responsible for achieving such activity does
not have a read permission concerning such information.

Pro11 states that a WFA-net should not include any activity that reads
information, and such information is inaccurate from the perspective of the actor
(reader) who is responsible the activity achievement.

Pro12 states that a WFA-net should not include any activity that reads
information, and such information is invalid from the perspective of the actor
who is responsible the activity achievement. Information is valid for read if its
currency (age) is smaller than its volatility, otherwise it is invalid.

Pro13 states that a WFA-net should not include any activity that reads

17

information, and such information is incomplete from the perspective of the
actor who is responsible for the activity achievement. Information is complete
for read, if it is value complete (information has been preserved against lost and
corruption during its transfer), and purpose of use complete (information has all
its sub-parts for performing a task at hand).

Pro14 states that a WFA-net should not include any activity that reads
information, and such information is inconsistent from the perspective of the
actor who is responsible for the activity achievement. Information is consistent
for read, if it has only one reader taking into consideration its purpose of use,
or it has multiple readers for the same purpose of use, and all of them have the
same read-time.

Pro15 states that a WFA-net should not include any activity that modifies
information, and the actor who is responsible for achieving such activity does
not have a modify permission.

Pro16 states that a WFA-net should not include any activity that sends
information, and the actor who is responsible for its achievement does not have
a send permission concerning such information.

Pro17 states that a WFA-net should not include any activity that sends
information, and such information is inaccurate at its destination from the per-
spective of the actor (sender) who is responsible for the activity achievement.
Information is accurate at its destination, if it has not been inappropriately
modified during its transfer (trustworthiness of the provision).

Pro18 states that a WFA-net should not include any activity that sends
information, and such information is incomplete at its destination from the per-
spective of the actor who is responsible for the activity achievement.

Pro19 states that a WFA-net should not include any activity that sends
information, and such information is invalid at its destination from the perspec-
tive of the actor who is responsible for the activity achievement. Information is
valid at its destination, if its transfer (provision) time is less than its send time.

Pro20 states that a WFA-net should not include any activity that has been
prevented from being fired. Activities might be prevented from being fired due
to several reasons. For example, the responsible actor does not have the ca-
pability to achieve the activity (goal), the responsible actor is not trusted for
achieving the activity. Moreover, an activity might be prevented because of IQ
related properties, e.g., activity is not able to produce, read, modify and/or send
information, because the responsible actor does not have the required permis-
sion. Furthermore, an activity might be prevented because of reading inaccurate,
incomplete, etc. information.

Pro21 states that the End position in a WFA-net should be reached, i.e.,
there should be at least one activity when fired the WFA-net reaches its End
position.

18

